Tuesday, November 29, 2022

7.8. Conversion of Inverse Trigonometric Functions Using Geometric Figure or Figures.

Express `\sin^{-1}(\frac\alpha\beta)` into others inverse trigonometric functions.

Solution: Here, `\angle ACB=\sin^{-1}(\frac\alpha\beta)`.

    `BC=\sqrt(\beta^2-\alpha^2)`.
`\sin^{-1}\left(\frac\alpha\beta\right)=\cos^{-1}\left(\frac{\sqrt{\beta^2-\alpha^2}}\beta\right)`.
`\sin^{-1}\left(\frac\alpha\beta\right)=\tan^{-1}\left(\frac\alpha\{\sqrt{\beta^2-\alpha^2}))`.
`\sin^{-1}\left(\frac\alpha\beta\right)=\cot^{-1}\left(\frac{\sqrt{\beta^2-\alpha^2}}\alpha\right)`.
`\sin^{-1}\left(\frac\alpha\beta\right)=\sec^{-1}\left(\frac\beta\sqrt{\beta^2-\alpha^2})`.
`\sin^{-1}\left(\frac\alpha\beta\right)=\cosec^{-1}\left(\frac\beta\alpha)`.  


Similarly,
Express `\cos^{-1}(\frac\alpha\beta)` into others inverse trigonometric functions.
Express `\tan^{-1}(\frac\alpha\beta)` into others inverse trigonometric functions.
Express `\cot^{-1}(\frac\alpha\beta)` into others inverse trigonometric functions.
Express `\sec^{-1}(\frac\alpha\beta)` into others inverse trigonometric functions.
Express `\cosec^{-1}(\frac\alpha\beta)` into others inverse trigonometric functions.
Example
1. Show that, `\sin cot^{-1}\tan\cos^{-1}\frac3\4=\frac3\4`.
Solution:
 So, `\sin cot^{-1}\tan\cos^{-1}\frac3\4`
=`\sin cot^{-1}\tan\tan^{-1}\frac\sqrt7\3`
=`\sin cot^{-1}\frac\sqrt7\3`
=`\sin sin^{-1}\frac3\4`
=`\frac3\4`
(Proved)

2. Show that, `\sin cot^{-1}\tan\cos^{-1}x=x`.
Try yourself.
3. Show that, `\cos tan^{-1}\cot\sin^{-1}x=x`.
Try yourself.
4. Show that, `\cot cos^{-1}\sin\tan^{-1}x=x`.
Try yourself.
5. Show that, `\sin cos^{-1}\tan\sec^{-1}x=\sqrt(2-x^2)`.
Try yourself.
6. Show that, `\sin cot^{-1}\tan^{-1}x=\sqrt(\frac(1+x^2)(2+x^2))`.
Try yourself.
7. Show that, `\sin cos^{-1}\tan\sec^{-1}(\frac(x)(y))=\frac\sqrt(2y^2-x^2)y`.
Try yourself.




Monday, November 28, 2022

7.9. Relation of Inverse Trigonometric Functions

7.9.1. Symmetric Relation of Inverse Trigonometric Functions 

1. `\sin^{-1}\left(x\right)=\cos ec^{-1}\left(\frac1x\right)`    when     `-1\leq x\leq1`.            

2. `\cos ec^{-1}\left(x\right)=\sin^{-1}\left(\frac1x\right)`    when     `x\leq-1\;or\;x\geq1`.

3. `\cos^{-1}\left(x\right)=\sec^{-1}\left(\frac1x\right)`        when     `-1\leq x\leq1`.  

4. `\sec^{-1}\left(x\right)=\cos^{-1}\left(\frac1x\right)`        when     `x\leq-1\;or\;x\geq1`.

5. `\tan^{-1}\left(x\right)=\cot^{-1}\left(\frac1x\right)`.                                                          

6. `\cot^{-1}\left(x\right)=\tan^{-1}\left(\frac1x\right)`.

Proof: 1. Let `\sin\theta=x\Rightarrow\theta=\sin^{-1}x\cdots\cdots\cdots(1)`. 

Again, `\sin\theta=x\Rightarrow\frac1{\cos ec\theta}=x\Rightarrow\cos ec\theta=\frac1x\Rightarrow\theta=\cos ec^{-1}\left(\frac1x\right)\Rightarrow\sin^{-1}\left(x\right)=\cos ec^{-1}\left(\frac1x\right)`.

Similarly, we can prove others relations from 2. to 6.

7. `\sin\left(\sin^{-1}x\right)=x`.            

8. `\cos\left(\cos^{-1}x\right)=x`            

9. `\tan\left(\tan^{-1}x\right)=x`.            

10. `\cot\left(\cot^{-1}x\right)=x`.            

11. `\sec\left(\sec^{-1}x\right)=x`.

12. `\cosec\left(\cosec^{-1}x\right)=x`.

Proof: 

7. Let `\sin x=\theta\Rightarrow x=\sin^{-1}\theta\Rightarrow x=\sin^{-1}\left(\sin x\right)\Rightarrow \sin^{-1}\left(\sin x\right)=x`.

Similarly, we can prove the relations from 8 to 12.

13. `\sin^{-1}\left(\sin x\right)=x`            

14. `\cos^{-1}\left(\cos x\right)=x`.            

15. `\tan^{-1}\left(\tan x\right)=x`.            

16. `\cot^{-1}\left(\cot x\right)=x`.

17. `\sec^{-1}\left(\sec x\right)=x`            

18. `\cosec^{-1}\left(\cosec x\right)=x`.

Proof:

13. `\sin x=\theta\Rightarrow x=\sin^{-1}\theta\Rightarrow x=\sin^{-1}\left(\sin x\right)\Rightarrow\sin^{-1}\left(\sin x\right)=x`.

Similarly, we can prove the relations from 14 to 118.

Example and Assessment:
1. `\sin^{-1}\left(\frac1{\sqrt2}\right)`
`=\sin^{-1}\left(\sin\left(\frac{\pi}4\right)\right)`
`=\frac{\pi}4`.
2. `\sin{\cos^{-1}(\frac{\sqrt3}2)}=\sin{\cos^{-1}(\cos(\frac{\pi}6))}=\sin\frac{\pi}6=\frac1\2`.
Try yourself.
3. `\sin^{-1}\left(-\frac1{\sqrt2}\right)=?`
Try yourself.
4. `\tan{\cos^{-1}(\frac1\{\sqrt3})}=?`
Try yourself.
5. `\sin^{-1}(-1)=\sin^{-1}{-sin(\frac\pi\2)}=\sin^{-1}{sin(-\frac\pi\2)}=-\frac\pi\2`.
Try yourself.
6. `\tan[\tan^{-1}{-\frac1{\sqrt3}}]=\tan[\tan^{-1}{-tan(\frac\pi\6)}]`
`=\tan[\tan^{-1}{tan(-frac\pi\6)}]=-frac\pi\6`.
7. `\sin^{-1}(-\cosx)+\sin^{-1}(\cos3x)=-2x`
Solution:
`\sin^{-1}(-\cosx)+\sin^{-1}(\cos3x)`
`=-\sin^{-1}(\cosx)+\sin^{-1}(\cos3x)`
`=-\sin^{-1}(\sin(\frac(\pi)(2)-x))+\sin^{-1}(\cos(\frac(\pi)(2)-3x))`
`=\frac(\pi)(2)-x+\frac(\pi)(2)-3x`
`=-2x`
8. Prove that, `\sec^2(\tan^{-1}2)+\cosec^2(\cot^{-1}3)=15`. SB 2014
9. Prove that, `\sec^2(\tan^{-1}4)+\tan^2(\sec^{-1}3)=25`. MB 2011
10. Prove that, `\sec^2(\cot^{-1}3+\cosec^2(\tan^{-1}2)=2\frac(13)(36)`. MB 2004
11. Prove that, `\cosec^2(\tan^{-1}\frac(1)(2))-3\sec^2(\cot^{-1}\sqrt3)=1`. KUET 2008-09

7.9.2. `\tan^{-1}x` Related Formulae:
Formula 1: 

`\tan^{-1}x+\tan^{-1}y=\tan^{-1}(\frac(x+y)(1-xy))` when `xy<1`.

Example 

1. `\tan^{-1}(\frac1\2)+\tan^{-1}(\frac3\2)=?`

Solution:

So, `\tan^{-1}(\frac1\2)+\tan^{-1}(\frac3\2)`

`=tan^{-1}(\frac(\frac1\2+frac3\2)(1-\frac1\2\times\frac3\2))`              since `[xy=\frac1\2\times\frac3\2=\frac3\4<1]`

`=tan^{-1}(\frac(2+3)(4-3))`

`=tan^{-1}5`

2. Prove that, `\tan^{-1}(\frac(7)(11))+\tan^{-1}(\frac(1)(7))=\frac(\pi)(4)`.

Solution: Try yourself.

Formula 2: 

`\tan^{-1}x+\tan^{-1}y=\frac(\pi)(2)+\tan^{-1}(\frac(x+y)(1-xy))` when `xy>1`

Example 

3. `\tan^{-1}3+\tan^{-1}2=?` 

Solution:

So, `\tan^{-1}3+\tan^{-1}2`

`=\pi+\tan^{-1}(\frac(3+2)(1-2\times3))`   since `xy=3\times2=6>1`

`=\pi+\tan^{-1}(-1)`

`=\pi-\tan^{-1}(1)`

`=\pi-\frac(\pi)4`

`=\frac(3\pi)4`

4. `\tan^{-1}2+\tan^{-1}3=?`

Solution: Try yourself.

Formula 3: 

`\tan^{-1}x+\tan^{-1}y=\frac\pi2` when `xy=1`

Example 

5. `\tan^{-1}(\frac3\2)+\tan^{-1}(\frac2\3)=?`

Solution:

So, `\tan^{-1}(\frac3\2)+\tan^{-1}(\frac2\3)`

`=\frac\pi\2`                                   Since `[xy=(\frac3\2)\times(\frac2\3)=1]`

6. `\tan^{-1}(\frac5\11)+\tan^{-1}(\frac11\5)=?`

Formula 4: 

`\tan^{-1}x-\tan^{-1}y=\tan^{-1}(\frac(x-y)(1+xy))`

Example 

7. Show that, `\tan^{-1}(\frac5\6)-\tan^{-1}(\frac49\71)=\tan^{-1}(\frac1\11)`

Solution:

So, `\tan^{-1}(\frac5\6)-\tan^{-1}(\frac49\71)`

`=\tan^{-1}{\frac(\frac(5)(6)-\frac49\71)(1+(\frac5\6)\times(\frac49\71))}`

`=\tan^{-1}{\frac(355-294)(426+245)}`

`=\tan^{-1}(\frac(1)(11))`. Proved.

8. Prove that, `\tan^{-1}(\frac(1)(3))-\tan^{-1}(\frac(1)(5))+\tan^{-1}(\frac(1)(7))=\tan^{-1}(\frac(1)(11))`.

Solution: Try yourself.

9. `\tan^{-1}(\frac2\10)-\tan^{-1}(\frac3\5)=?`

Solution: Try yourself.

10. `\tan^{-1}2-\tan^{-1}3=?`

Solution: Try yourself.

11. `\tan^{-1}3-\tan^{-1}2=?`

Solution: Try yourself.

Formula 5: 

`\tan^{-1}x+\tan^{-1}y+\tan^{-1}z=\tan^{-1}(\frac(x+y+z-xyz)(1-xy-yz-zx))` when `xy+yz+zx<=1`.

Example 

12. Show that, `\tan^{-1}(\frac(1)(4))+\tan^{-1}(\frac(1)(5))+\tan^{-1}(\frac(1)(8))=-\tan^{-1}(\frac(91)(2560))` 

Solution: 

`\tan^{-1}(\frac(1)(4))+\tan^{-1}(\frac(1)(5))+\tan^{-1}(\frac(1)(8))`

`=\tan^{-1}{\frac(\frac1\4+\frac1\5+\frac1\8-(\frac1\4)(\frac1\5)(\frac1\8))(1-(\frac1\4)(\frac1\5)-(\frac1\5)(\frac1\8)-(\frac1\8)(\frac1\4))}` 

since `xy+yz+zx=(\frac(1)(4))(\frac(1)(5))+(\frac(1)(5))(\frac(1)(8))+(\frac(1)(8))(\frac(1)(4))=(\frac(1)(20))+(\frac(1)(40))+(\frac(1)(32))=\frac(17)(160)<1`

`=\tan^{-1}{\frac(40+32+20-1)(160-(40)(32)-(32)(20)-(20)(40))}`

`=\tan^{-1}{\frac(91)(160-1280-640-800)}`

`=\tan^{-1}{\frac(91)(-2560)}`

`=-\tan^{-1}(\frac(91)(2560))` 

Formula 6: 

`\tan^{-1}x+\tan^{-1}y+\tan^{-1}z=\frac(\pi)(2)+\tan^{-1}(\frac(x+y+z-xyz)(1-xy-yz-zx))` when `xy+yz+zx>1`

Example 

13. `\tan^{-1}5+\tan^{-1}8+\tan^{-1}2=`

Solution:

`\tan^{-1}5+\tan^{-1}8+\tan^{-1}2`

since `xy+yz+zx=(5)(8)+(8)(2)+(2)(5)=66>1`

`=\frac(\pi)(2)+\tan^{-1}{\frac(5+8+2-(5)(8)(2))(1-(5)(8)-(8)(2)-(2)(5))}`

`=\frac(\pi)(2)+\tan^{-1}{\frac(65)(-65)}` 

`=\frac(\pi)(2)+\tan^{-1}(-1)` 

`=\frac(\pi)(2)-\tan^{-1}(1)`

`=\frac(\pi)(2)-\frac(\pi)(4)` 

`=\frac(\pi)(4)`

Formula 7: 

`\2tan^{-1}x=\sin^{-1}\frac(2x)\(1+x^2)=\cos^{-1}\frac(1-x^2)\(1+x^2)=\tan^{-1}(\frac(2x)(1-x^2))`

Example

14. `\tan^{-1}(\frac(1)(2))=\sin^{-1}(?)=\coss^{-1}(?)=\tan^{-1}(?)`

Solution:

`\tan^{-1}(\frac(1)(2))`

`=\frac(1)(2)\times 2\tan^{-1}(\frac(1)(2))`

`=\frac(1)(2)\times\sin^{-1}\frac(2(\frac(1)(2)))\(1+(\frac(1)(2))^2)`

`=\frac(1)(2)\times\sin^{-1}\frac(1)(1+(\frac(1)(4))`

`=\frac(1)(2)\times\sin^{-1}\frac(1)(\frac(5)(4))`

`=\frac(1)(2)\sin^{-1}\(\frac(4)(5))`


`\tan^{-1}(\frac(1)(2))`

`=\frac(1)(2)\times 2\tan^{-1}(\frac(1)(2))`

`=\frac(1)(2)\times\cos^{-1}\frac(1-(\frac(1)(2))^2)\(1+(\frac(1)(2))^2)`

`=\frac(1)(2)\times\cos^{-1}\frac(1-\frac(1)(4))(1+\frac(1)(4))`

`=\frac(1)(2)\times\cos^{-1}(\frac(4-1)(4+1))`

`=\frac(1)(2)\cos^{-1}(\frac(3)(5))`


`\tan^{-1}(\frac(1)(2))`

`=\frac(1)(2)\times 2\tan^{-1}(\frac(1)(2))`

`=\frac(1)(2)\times\tan^{-1}\frac(2(\frac(1)(2)))\(1-(\frac(1)(2))^2)`

`=\frac(1)(2)\times\tan^{-1}\frac(1)(1-(\frac(1)(4))`

`=\frac(1)(2)\times\tan^{-1}\frac(1)(\frac(3)(4))`

`=\frac(1)(2)\tan^{-1}\(\frac(4)(3))`

So,  `\tan^{-1}(\frac(1)(2))=\frac(1)(2)\sin^{-1}\(\frac(4)(5))=\frac(1)(2)\cos^{-1}(\frac(3)(5))=\frac(1)(2)\tan^{-1}\(\frac(4)(3))`.

15. Show that, `\4tan^{-1}\frac(1)(5)-\tan^{-1}\frac(1)\(239)=\frac(\pi)(4)`

Solution:

So, `\4tan^{-1}\frac(1)(5)-\tan^{-1}\frac(1)\(239)`

`=\2\times2tan^{-1}\frac(1)(5)-\tan^{-1}\frac(1)\(239)`

`=\2\timestan^{-1}\frac(2\times\frac(1)(5))(1-(\frac(1)(5))^2)-\tan^{-1}\frac(1)\(239)`

`=\2\timestan^{-1}\frac(10)(25-1)-\tan^{-1}\frac(1)\(239)`

`=2\tan^{-1}\frac(5)(12)-\tan^{-1}\frac(1)\(239)`

`=\tan^{-1}\frac(2\times\frac(5)(12))(1-(\frac(5)(12))^2)-\tan^{-1}\frac(1)\(239)`

`=\tan^{-1}\frac(\frac(5)(6))(1-\frac(25)(144))-\tan^{-1}\frac(1)\(239)`

`=\tan^{-1}\frac(120)(144-25)-\tan^{-1}\frac(1)\(239)`

`=\tan^{-1}\frac(120)(119)-\tan^{-1}\frac(1)\(239)`

`=\tan^{-1}\frac(\frac(120)(119)-\frac(1)\(239))(1+(\frac(120)(119))(\frac(1)\(239))`

`=\tan^{-1}(\frac(\frac(2856)(28441))(\frac(2856)(28441)))`

`=\tan^{-1}(1)`

`=\frac(\pi)(4)`

Formula 8: 

`\2tan^{-1}x=\pi+\tan^{-1}(\frac(2x)(1-x^2))` when `x>1`

Example

16. `2\tan^{-1}(\frac(3)(2))=?`

Solution: 

`2\tan^{-1}(\frac(3)(2))`

`=\pi+\tan^{-1}(\frac(2\times\frac(3)(2))(1-(\frac(3)(2))^2))`

`=\pi+\tan^{-1}(\frac(3)(1-(\frac(9)(4))))`

`=\pi+\tan^{-1}(\frac(3)(4-9)`

`=\pi-\tan^{-1}(\frac(3)(5))`

17. Prove that, `2\tan^{-1}(\frac(3)(2))+tan^{-1}(\frac(3)(5))=\pi`

18. Prove that, `\sin^{-1}(\frac(3)(5))+\cot^{-1}(\frac(17)(19))=\tan^{-1}(\frac(127)(11))`

Solution:

`\sin^{-1}(\frac(3)(5))+\cot^{-1}(\frac(17)(19))`

`=\tan^{-1}(\frac(3)(4))+\tan^{-1}(\frac(19)(17))`

`=\tan^{-1}{\frac(\frac(3)(4)+\frac(19)(17))(1-(\frac(3)(4))(\frac(19)(17)))}`

`=\tan^{-1}{\frac(51+76)(68-57)}`

`=\tan^{-1}(\frac(127)(11))`

19. Prove that, `\sin^{-1}(\frac(4)(5))+\cos^{-1}(\frac(2)(\sqrt5))=\tan^{-1}(\frac(11)(2))`

Solution: Try yourself.

20. Prove that, `4{\sin^{-1}(\frac(1)(\sqrt5))+\cot^{-1}3)}=\pi`

Solution: Try yourself.

21. Prove that, `\tan^{-1}(\frac(1)(4))+\tan^{-1}(\frac(2)(9))=\frac(1)(2)\cos^{-1}(\frac(3)(5))`

Solution: Try yourself.

22. Prove that, `\cos^{-1}(\frac(63)(65))+2\tan^{-1}(\frac(1)(5))=\tan^{-1}(\frac(3)(4))`

Solution: Try yourself.

23. Prove that, `\cos^{-1}(\frac(1)(\sqrt5))-\frac(1)(2)\sin^{-1}(\frac(3)(5))+\tan^{-1}(\frac(1)(3))=\tan^{-1}2`

Solution: Try yourself.

24. Prove that, `\sin^{-1}(\frac(3)(5))+\frac(1)(2)\cos^{-1}(\frac(5)(13))-\cot^{-1}2=\tan^{-1}(\frac(28)(29))`

Solution: Try yourself.

25. Prove that, `\tan^{-1}(\frac(2)(3))=\frac(\pi)(2)-\sec^{-1}(\frac(sqrt13)(2)`.

Solution: Try yourself.

26. Prove that, `\cos^{-1}(\sqrt(\frac(2)(3)))-\cos^{-1}(\frac(\sqrt6+1)(2sqrt3))=\frac(\pi)(6)`

Solution: Try yourself.

27. Prove that, `\cos(2\tan^{-1}(\frac(1)(7)))=\frac(\pi)(6)`

Solution: Try yourself.

28. Prove that, `\tan(2\tan^{-1}x)=2\tan(\tan^{-1}x+\tan^{-1}x^3)`. ***

Solution: Try yourself.

29. Prove that, `\cot^{-1}(\tan2x)+\cot^{-1}(-\tan3x)=x`

Solution: Try yourself.

30. Prove that, `\tan^{-1}(\frac(1)(2)\tan2\theta)+\tan^{-1}(\cot\theta)+\tan^{-1}(\cot^3\theta)=0`.*

Solution: Try yourself.

31. Prove that, `\tan^{-1}{(\sqrt2+1)\tan\theta}-tan^{-1}{(\sqrt2-1)tan\theta}=\tan^{-1}(\sin2\theta)`.*

Solution: Try yourself.

32. If , `\sin^{-1}(\frac(2p)(1+p^2))+\cos^{-1}(\frac(1-q^2)(1+q^2))=2\tan^{-1}x`  then prove that, `x=\frac(p-q)(1+pq)`.*

Solution: Try yourself.

33. Prove that, `\tan^{-1}(\sqrtx)=\frac(1)(2)cos^{-1}(\frac(1-x)(1+x))`.*

Solution: Try yourself.

34. Prove that, `\tan^{-1}x=\frac(1)(2)cosec^{-1}(\frac(1+x^2)(2x))`.*

Solution: Try yourself.

35. Prove that, `\tan^{-1}x=\frac(1)(2)cosec^{-1}(\frac(1+x^2)(2x))`.*

Solution: Try yourself.

36. Prove that, `2\tan^{-1}(\sqrt(\frac(x)(y))\tan\frac(\theta)(2))=sin^{-1}{\frac(2\sqrt(xy)\sin\theta)((y+x)+(y-x)\cos\theta)}`.*

Solution:

`2\tan^{-1}(\sqrt(\frac(x)(y))\tan\frac(\theta)(2))`

`=sin^{-1}(\frac(2\sqrt(\frac(x)(y))\tan\frac(\theta)(2))(1+(\sqrt(\frac(x)(y))\tan\frac(\theta)(2))^2))`

`=sin^{-1}(\frac(2\sqrt(\frac(x)(y))\tan\frac(\theta)(2))(1+\frac(x)(y)\tan^2\frac(\theta)(2)))`

`=sin^{-1}(\frac(2\sqrt(xy)\frac(\sin\frac(\theta)(2))(\cos\frac(\theta)(2)))(y+x\frac(\sin^2\frac(\theta)(2))(\cos^2\frac(\theta)(2))))`

`=sin^{-1}(\frac(\sqrt(xy)\times2\sin\frac(\theta)(2)\cos\frac(\theta)(2))(y\cos^2\frac(\theta)(2)+x\sin^2\frac(\theta)(2)))`

`=sin^{-1}{\frac(\sqrt(xy)\times\sin\theta)(\frac(y)(2)\times2\cos^2\frac(\theta)(2)+\frac(x)(2)\times2\sin^2\frac(\theta)(2))}`

`=sin^{-1}{\frac(2\sqrt(xy)\times\sin\theta)(y(1+\cos\theta)+x(1-\cos\theta))}`

`=sin^{-1}{\frac(2\sqrt(xy)\sin\theta)((y+x)+(y-x)\cos\theta)}`.

37. Prove that, `2\tan^{-1}(\sqrt(\frac(x-y)(x+y))\tan\frac(\theta)(2))=cos^{-1}(\frac(y+x\cos\theta)(x+y\cos\theta))`.***

Solution: Try yourself.

38. Prove that, `2\tan^{-1}[\tan\frac(\alpha)(2)\tan(\frac(\pi)(4)-\frac(\beta)(2))]=tan^{-1}(\frac(\sin\alpha\cos\beta)(\sin\beta+\cos\alpha))`.*

Solution: Try yourself.

39. Prove that, `\tan^{-1}(\frac(x\cos\theta)(1-x\sin\theta))-\tan^{-1}(\frac(x-\sin\theta)(cos\theta))=\theta`.*

Solution: Try yourself.

7.9.3. Formulae for `\sin^{-1}x+\cos^{-1}x`, `\tan^{-1}x+\cot^{-1}x` and `\cosec^{-1}x+\sec^{-1}x`:

 `\sin^{-1}x+\cos^{-1}x=\frac\pi\2` when `-1<=x<=1`

`\tan^{-1}x+\cot^{-1}x=\frac\pi\2` when `x>=0`

`\cosec^{-1}x+\sec^{-1}x=\frac\pi\2` when `x<=-1,     x>=1`

3.9.4. Formula for `\sin^{-1}x+-\sin^{-1}y` and `\cos^{-1}x+-\sin^{-1}y`:

`\sin^{-1}x+\sin^{-1}y=\sin^{-1}{x\sqrt(1-y^2)+y\sqrt(1-x^2)}` when `x^2+y^2<=1`

`\sin^{-1}x+\sin^{-1}y=\pi-\sin^{-1}{x\sqrt(1-y^2)+y\sqrt(1-x^2)}` when `x^2+y^2>1`

`\sin^{-1}x-\sin^{-1}y=\sin^{-1}{x\sqrt(1-y^2)-y\sqrt(1-x^2)}` 

`\cos^{-1}x+\cos^{-1}y=\cos^{-1}{xy-\sqrt((1-y^2)(1-y^2))}` when `x+y>=0`

`\cos^{-1}x-\cos^{-1}y=\cos^{-1}{xy+\sqrt((1-y^2)(1-y^2))}`

Example and Assessment

1. If `\sin^{-}x+\sin^{-}\frac(\pi)(2)`, then prove that, (i) `x^2+y^2=1` and (ii) `x\sqrt(1-y^2)+y\sqrt(1-x^2)`. 

Try yourself

7.9.5. Formula for `2\sin^{-1}x`, `2\cos^{-1}x`, `2\tan^{-1}x`, `3\sin^{-1}x`, `3\cos^{-1}x` and `3\tan^{-1}x`:

Formula

(1) `2\sin^{-1}x=sin^{-1}(2x\sqrt(1-x^2))`

Proof:

(1) Let  `\sin^{-1}x=y\Rightarrow x=\siny-----(i)`

We know that, 

`\sin2y=2\siny\cosy=2siny\sqrt(1-\sin^2y)=2x\sqrt(1-x^2)`

`\Rightarrow \sin2y=2x\sqrt(1-x^2)`

`\Rightarrow 2y=\sin^{-1}(2x\sqrt(1-x^2))`

`\Rightarrow 2\sin^{-1}=\sin^{-1}(2x\sqrt(1-x^2))`

Formula (2) `2\cos^{-1}x=cos^{-1}(2x^2-1)`

Proof:

Let  `\cos^{-1}x=y\Rightarrow x=\cosy-----(i)`

We know that, 

`\cos2y=2\cos^2y-1=2x^2-1`

`\Rightarrow \cos2y=2x^2-1`

`\Rightarrow 2y=\cos^{-1}(2x^2-1)`

`\Rightarrow 2\cos^{-1}=\cos^{-1}(2x^2-1)`

Formula (3) `2\tan^{-1}x=tan^{-1}(\frac(2x)\(1-x^2))`

Proof:

Let  `\tan^{-1}x=y\Rightarrow x=\tany-----(i)`

We know that, 

`\tan2y=\frac(2\tany)\(1-\tany)`

`\Rightarrow 2y=\tan^{-1}(\frac(2\tany)\(1-\tan^2y))`

`\Rightarrow 2\tan^{-1}x=\tan^{-1}(\frac(2x)\(1-x^2))`

Formula (4) `3\sin^{-1}x=sin^{-1}(3x-4x^3)`

Proof:

Let  `\sin^{-1}x=y\Rightarrow x=\siny-----(i)`

We know that, 

`\sin3y=3\siny-4sin^3y`

`\Rightarrow 2y=\tan^{-1}(\frac(2\tany)\(1-\tan^2y))`

`\Rightarrow 2\tan^{-1}x=\tan^{-1}(\frac(2x)\(1-x^2))`

Example

(1) Prove that, `\sin(3\sin^{-1}x)=3x-4x^3`.

Solution:

`\sin(3\sin^{-1}x)`

`\sin(sin^{-1}(3x-4x^3))`

`=3x-4x^3`. Proved

Formula (5) `3\cos^{-1}x=cos^{-1}(4x^3-3x)`

Proof:

Formula (6) `3\tan^{-1}x=tan^{-1}(\frac(3x-x^3)\(1-3x^2))`

Proof:

Example and Assessment

(1) Prove that, `\cos^{-1}x=2\sin^{-1}\sqrt(\frac(1-x)(2))=2\cos^{-1}\sqrt(\frac(1+x)(2))`. 

RUET 2004-05

Solution:

Let `\cos^{-1}x=\theta\Rightarrowx=\cos\theta`.

Now, 

`\sin(\frac(\theta)(2))=\sqrt(\frac(2sin^2\frac(\theta)(2))(2))`

`\Rightarrow\sin(\frac(\theta)(2))=\sqrt(\frac(1-\cos\theta)(2))`

`\Rightarrow\sin(\frac(\theta)(2))=\sqrt(\frac(1-x)(2))`

`\Rightarrow\frac(\theta)(2)=\sin^{-1}{\sqrt(\frac(1-\cos\theta)(2))}`

`\Rightarrow\cos^{-1}x=2\sin^{-1}\sqrt(\frac(1-x)(2))`

Again,

`\cos(\frac(\theta)(2))=\sqrt(\frac(2cos^2\frac(\theta)(2))(2))`

`\Rightarrow\cos(\frac(\theta)(2))=\sqrt(\frac(1+\cos\theta)(2))`

`\Rightarrow\cos(\frac(\theta)(2))=\sqrt(\frac(1+x)(2))`

`\Rightarrow\frac(\theta)(2)=\cos^{-1}{\sqrt(\frac(1+\cos\theta)(2))}`

`\Rightarrow\cos^{-1}x=2\cos^{-1}\sqrt(\frac(1+x)(2))`

So, `\cos^{-1}x=2\sin^{-1}\sqrt(\frac(1-x)(2))=2\cos^{-1}\sqrt(\frac(1+x)(2))`.

Saturday, November 26, 2022

7.7. Principal Value of Inverse Trigonometric Functions

The least numeral value (positive or negative) of inverse trigonometric function is known as principal value of inverse trigonometric function.
Inverse Trigonometric Functions Principal Value when `x\geq0` Principal Value when `x<0`
`\sin^{-1}x` `0\leq\sin^{-1}(x)\leq\frac{\pi}2` `-\frac{\pi}2\leq\sin^{-1}(x)<0`
`\cos^{-1}x` `0\leq\cos^{-1}(x)\leq\frac{\pi}2` `\frac{\pi}2\leq\cos^{-1}(x)\leq\pi`
`\tan^{-1}x` `0\leq\tan^{-1}(x)\leq\frac{\pi}2` `-\frac{\pi}2\leq\tan^{-1}(x)<0`
`\cot^{-1}x` `0\leq\cot^{-1}(x)\leq\frac{\pi}2` `\frac{\pi}2\leq\cot^{-1}(x)\leq\pi`
`\sec^{-1}x` `0\leq\sec^{-1}(x)\leq\frac{\pi}2` `\frac{\pi}2\leq\sec^{-1}(x)\leq\pi`
`\cosec^{-1}x` `0\leq\cosec^{-1}(x)\leq\frac{\pi}2` `-\frac{\pi}2\leq\cosec^{-1}(x<0`

Example
1. Find the principal value of `\sin^{-1}\left(\frac1\2right)`.
Solution: We know that,
`\sin^{-1}(\frac(1)(2))=\sin^{-1}{\sin(\frac(pi)(6))}=\frac(pi)(6)`           and           `\sin^{-1}(\frac(1)(2))=\sin^{-1}{\sin(2\pi+\frac(pi)(6))}=\frac(13\pi)(6)`.

Since, `0\leq\sin^{-1}(x)\leq\frac(\pi)(2)` for `x\geq0` and `x=\frac(1)(2)` 

So, the principal value of `\sin^{-1}\left(\frac1\2right)` is `\frac\pi\6`. (Answer:)   

2. Find the principal value of `\cos^{-1}\left(\frac1{\sqrt2}\right)`.    
Solution: We know that,
`\cos^{-1}(\frac(1)(\sqrt2))=\cos^{-1}{(\cos(\frac(\pi)(4)}=\frac(\pi)(4)`           and           `\cos^{-1}(\frac(1)(\sqrt2))=\cos^{-1}{\cos(2\pi+\frac(pi)(4))}=\frac(9\pi)(4)`.
 
Since, `0\leq\cos^{-1}(x)\leq\frac(\pi)(2)` for `x\geq0` and `x=\frac(1)(\sqrt2)`

So, the principal value of `\cos^{-1}\left(\frac1{\sqrt2}\right)` is `\frac\pi\4`. Answer:

3. Find the principal value of `\sin^{-1}\left(-\frac1{\sqrt2}\right)`.
Solution: We know that,
`\sin^{-1}\left(-\frac1{\sqrt2}\right)` = `\sin^{-1}\left(-sin\frac\pi\4\right)` = `\sin^{-1}\{sin\left(-\frac\pi\4\right)\}` =  `-\frac\pi\4`

Since, `-\frac(\pi)(2)\leq\sin^{-1}(x)\leq0` for `x<0` and `x=-\frac(1)(\sqrt2)`

So, the principal value of `\sin^{-1}\left(-\frac1{\sqrt2}\right)` is `-\frac\pi\4`. Answer:

4. Find the principal value of `\sin^{-1}\left(-1right)`.
Try yourself.
5. Find the principal value of `\sin^{-1}\left(-\frac\sqrt3\2right)`.
Try yourself.
6. Find the principal value of `\sin^{-1}\left(\frac\sqrt3\2right)`.
Try yourself.
7. Find the principal value of `\cos^{-1}\left(\frac\sqrt3\2right)`.
Try yourself.
8. Find the principal value of `sin{\cos^{-1}\left(\frac\sqrt3\2right)}`.
Try yourself.
9. Find the principal value of `tan{\cos^{-1}\left(\frac1{\sqrt2}right)}`.
Try yourself.
10. Find the principal value of `\sin^{-1}\left(\frac1\2right)`.
Try yourself.
11. Find the principal value of `\tan^{-1}8+\tan^{-1}\left(\frac9\7right)`.
Solution: We know that,
So, the principal value of `\tan^{-1}8+\tan^{-1}\left(\frac9\7right)` is `\tan^{-1}\left(\frac(8+\frac9\7)\(1-8*\frac9\7)right)` = `\tan^{-1}\left(\frac(56+9)\(7-72)right)` = `\tan^{-1}(-1)` = `\tan^{-1}(-\tan\frac\pi\4)` = `\tan^{-1}{\tan(-\frac\pi\4)}`=  `\tan^{-1}{\tan(-\frac\pi\4)}`,  `\tan^{-1}{\tan(\pi-\frac\pi\4)}` = `-\frac\pi\4`, `\frac{3\pi}4` = `\frac{3\pi}4`. [Since sum of two positive angles cannot be negative]

7.6. Inverse of cosecx or arccosec(x)


 

7.5. Inverse of secx or arcsec(x)