| Inverse Trigonometric Functions | Principal Value when `x\geq0` | Principal Value when `x<0` |
|---|---|---|
| `\sin^{-1}x` | `0\leq\sin^{-1}(x)\leq\frac{\pi}2` | `-\frac{\pi}2\leq\sin^{-1}(x)<0` |
| `\cos^{-1}x` | `0\leq\cos^{-1}(x)\leq\frac{\pi}2` | `\frac{\pi}2\leq\cos^{-1}(x)\leq\pi` |
| `\tan^{-1}x` | `0\leq\tan^{-1}(x)\leq\frac{\pi}2` | `-\frac{\pi}2\leq\tan^{-1}(x)<0` |
| `\cot^{-1}x` | `0\leq\cot^{-1}(x)\leq\frac{\pi}2` | `\frac{\pi}2\leq\cot^{-1}(x)\leq\pi` |
| `\sec^{-1}x` | `0\leq\sec^{-1}(x)\leq\frac{\pi}2` | `\frac{\pi}2\leq\sec^{-1}(x)\leq\pi` |
| `\cosec^{-1}x` | `0\leq\cosec^{-1}(x)\leq\frac{\pi}2` | `-\frac{\pi}2\leq\cosec^{-1}(x<0` |
Example
1. Find the principal value of `\sin^{-1}\left(\frac1\2right)`.
Solution: We know that,
`\sin^{-1}(\frac(1)(2))=\sin^{-1}{\sin(\frac(pi)(6))}=\frac(pi)(6)` and `\sin^{-1}(\frac(1)(2))=\sin^{-1}{\sin(2\pi+\frac(pi)(6))}=\frac(13\pi)(6)`.
Since, `0\leq\sin^{-1}(x)\leq\frac(\pi)(2)` for `x\geq0` and `x=\frac(1)(2)`
So, the principal value of `\sin^{-1}\left(\frac1\2right)` is `\frac\pi\6`. (Answer:)
2. Find the principal value of `\cos^{-1}\left(\frac1{\sqrt2}\right)`.
Solution: We know that,
`\cos^{-1}(\frac(1)(\sqrt2))=\cos^{-1}{(\cos(\frac(\pi)(4)}=\frac(\pi)(4)` and `\cos^{-1}(\frac(1)(\sqrt2))=\cos^{-1}{\cos(2\pi+\frac(pi)(4))}=\frac(9\pi)(4)`.
Since, `0\leq\cos^{-1}(x)\leq\frac(\pi)(2)` for `x\geq0` and `x=\frac(1)(\sqrt2)`
So, the principal value of `\cos^{-1}\left(\frac1{\sqrt2}\right)` is `\frac\pi\4`. Answer:
3. Find the principal value of `\sin^{-1}\left(-\frac1{\sqrt2}\right)`.
Solution: We know that,
`\sin^{-1}\left(-\frac1{\sqrt2}\right)` = `\sin^{-1}\left(-sin\frac\pi\4\right)` = `\sin^{-1}\{sin\left(-\frac\pi\4\right)\}` = `-\frac\pi\4`
Since, `-\frac(\pi)(2)\leq\sin^{-1}(x)\leq0` for `x<0` and `x=-\frac(1)(\sqrt2)`
So, the principal value of `\sin^{-1}\left(-\frac1{\sqrt2}\right)` is `-\frac\pi\4`. Answer:
4. Find the principal value of `\sin^{-1}\left(-1right)`.
Try yourself.
5. Find the principal value of `\sin^{-1}\left(-\frac\sqrt3\2right)`.
Try yourself.
6. Find the principal value of `\sin^{-1}\left(\frac\sqrt3\2right)`.
Try yourself.
7. Find the principal value of `\cos^{-1}\left(\frac\sqrt3\2right)`.
Try yourself.
8. Find the principal value of `sin{\cos^{-1}\left(\frac\sqrt3\2right)}`.
Try yourself.
9. Find the principal value of `tan{\cos^{-1}\left(\frac1{\sqrt2}right)}`.
Try yourself.
10. Find the principal value of `\sin^{-1}\left(\frac1\2right)`.
Try yourself.
11. Find the principal value of `\tan^{-1}8+\tan^{-1}\left(\frac9\7right)`.
Solution: We know that,
So, the principal value of `\tan^{-1}8+\tan^{-1}\left(\frac9\7right)` is `\tan^{-1}\left(\frac(8+\frac9\7)\(1-8*\frac9\7)right)` = `\tan^{-1}\left(\frac(56+9)\(7-72)right)` = `\tan^{-1}(-1)` = `\tan^{-1}(-\tan\frac\pi\4)` = `\tan^{-1}{\tan(-\frac\pi\4)}`= `\tan^{-1}{\tan(-\frac\pi\4)}`, `\tan^{-1}{\tan(\pi-\frac\pi\4)}` = `-\frac\pi\4`, `\frac{3\pi}4` = `\frac{3\pi}4`. [Since sum of two positive angles cannot be negative]
No comments:
Post a Comment